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Orthocomplementation and Compound Systems

Boris Ischi1

In their 1936 founding paper on quantum logic, Birkhoff and von Neumann postulated
that the lattice describing the experimental propositions concerning a quantum system
is orthocomplemented. We prove that this postulate fails for the lattice Lsep describing a
compound system consisting of so called separated quantum systems. By separated we
mean two systems prepared in different “rooms” of the lab, and before any interaction
takes place. In that case, the state of the compound system is necessarily a product state.
As a consequence, Dirac’s superposition principle fails, and thereforeLsep cannot satisfy
all Piron’s axioms. In previous works, assuming that Lsep is orthocomplemented, it was
argued that Lsep is not orthomodular and fails to have the covering property. Here we
prove that Lsep cannot admit an orthocomplementation. Moreover, we propose a natural
model for Lsep which has the covering property.
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1. INTRODUCTION

A cornerstone in physics is the concept of a mathematical phase-space �S

associated with a physical system S, representing all possible states of S. For
instance, a classical particle is at each instant t associated with a point (�xt , �pt ) ∈ R

6

where �xt and �pt are the position and the momentum of the particle at time t ,
respectively. On the other hand, in quantum theory, it is assumed that there is a
complex Hilbert space HS associated with S, such that �S = (HS − 0)/C, the set
of one-dimensional subspaces of HS (Neumann, 1955).

In Birkhoff and Neumann (1936), Section 2, Birkhoff and von Neumann
call a measurement M on a physical system S, together with a given subset
σ of possible outcomes, an experimental proposition concerning the system S.
Experimental propositions can be correlated with subsets of �S by assigning to
each proposition P , the set µ(P ) of states in which the measurement yields with
certainty an outcome in σ . In the sequel, we shall denote the image of the map µ,

1 Laboratoire de Physique des Solides, Université Paris-Sud, Orsay, France; e-mail: ischi@
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ordered by set-inclusion, by LS . Note that LS ⊆ 2�S , and obviously ∅ and �S are
in LS .

In classical mechanics, µ(¬P ) = �S\µ(P ), where ¬P denotes the propo-
sition defined by the same measurement, but with the complementary subset of
outcomes OM\σ , where OM denotes the set of all possible outcomes of the
measurement M. This means that for any state, the probability that the outcome
lies in σ (respectively in OM\σ ) is either 1 or 0. Hence, in classical mechanics,
LS is a suborthoposet of 2�S .

For quantum theory the situation is totally different: The measurement M is
associated with a self-adjoint operator inHS , and σ with a projector PV on a closed
subspace V of HS . For a given state p, the probability that the outcome of M lies
in σ (respectively in OM\σ ) is given by ‖PV (φ)‖2 (respectively by ‖PV ⊥ (φ)‖2)
where φ ∈ p with ‖φ‖ = 1. Whence, µ(P ) = (V − 0)/C and µ(¬P ) = (V ⊥ −
0)/C. Therefore, in quantum theory, LS is a suborthoposet of P(HS) = {(V −
0)/C ; V ⊆ HS, V ⊥⊥ = V }, the lattice of closed subspaces of HS .

For both classical mechanics and quantum theory, Birkhoff and von Neumann
postulated thatLS is an orthocomplemented lattice (Birkhoff and Neumann (1936),
Section 5–6). More precisely, LS is assumed to be a subortholattice, of 2�S in the
classical case, and of P(HS) in the quantum case.

In this paper, we want to study the mathematical structure of the phase-
space �S and the poset LS of a compound system S consisting of two separated
quantum systems S1 and S2. By separated, we mean two systems (electrons,
atoms or whatever) prepared in two different “rooms” of the lab, and before any
interaction takes place. In that case, we denote �S by �sep, and LS by Lsep. As a
main result, we show that Lsep cannot admit an orthocomplementation.

What do we know about �sep and Lsep? In quantum theory, the phase-space
of a two-body system is given by (H1 ⊗ H2 − 0)/C, hence the state of S can be
either entangled or a product state (Neumann, 1955). Entangled states have been
observed in many experiments, involving pairs of photons (see Aspect (1999))
and references herein) or massive particles (Rowe et al., 2001). Gisin proved
that any entangled state violates a Bell inequality (Gisin, 1991). Therefore, for
separated systems as defined here, the state is necessarily a product p1 ⊗ p2 with
pi ∈ (Hi − 0)/C. Whether the two systems are fermions or bosons does not matter.
Since they are prepared independently and do not interact, they are distinguishable
and not correlated. As a consequence, we can put

�sep = �S1 × �S2 .

Further, let P1 and P2 be experimental propositions concerning S1 and S2,
respectively. Then, obviously, both P1 and P2 are also experimental proposi-
tions concerning the compound system S. Moreover, µ(P1) = µ1(P1) × �2 and
µ(P2) = �1 × µ2(P2). Now, since S1 and S2 are totally independent from each
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other, we can perform P1 and P2 simultaneously (or one after the other) and define
the experimental propositions concerning the compound system P1 AND P2 and
P1 OR P2. Then, obviously

µ(P1 AND P2) = µ1(P1) × µ2(P2)

µ(P1 OR P2) = µ1(P1) × �2 ∪ �1 × µ2(P2)

Note that if we only consider those kind of experimental propositions on the
compound system S, thenLsep is given by the separated product of AertsLS1 ∧©LS2

defined in Aerts (1982) (see Section 4).
In Section 2, we will see that some important experimental propositions

are not described by the separated product of Aerts. This means that Lsep can-
not be constructed by simply considering the conjunctions and disjunctions of
propositions concerning S1 and S2. As a consequence, in order to investigate the
mathematical structure of Lsep, we proceed as follows. First, we show that Lsep

is a weak tensor product of LS1 and LS2 (Section 3), and then, we prove that if
a weak tensor product admits an orthocomplementation, then it is isomorphic to
the separated product of Aerts; whence follows our main claim, namely that Lsep

cannot admit an orthocomplementation.

2. TWO ARGUMENTS AGAINST THE SEPARATED PRODUCT

2.1. Missing Propositions

Let S be any physical system undergoing some time evolution from a time
t0 to a time t1. Let U : �St0 → �St1 be a map describing this time evolution. Let
Mt1 be a measurement which can be performed on S at time t1, and let Pt1 be
an experimental proposition associated with Mt1 . Then, Daniel pointed out that
we can define an experimental proposition �(Pt1 ) concerning S at time t0, by the
prescription: “Let S evolve from time t0 to time t1 and perform Mt1 ”; obviously,
U−1(µ(Pt1 )) = µ(�(Pt1 )) (Daniel, 1989). As a consequence, if we ask LS t0 to
describe also those kind of experimental propositions, then for any b ∈ LS t1 ,
U−1(b) ∈ LS t0 .

Note that in quantum theory, the time evolution of an isolated system S

is described by a unitary operator on the Hilbert space HS ; moreover unitary
operators preserve closed subspaces. In general, it seems natural to require that
the poset representing the experimental propositions concerning a physical system,
describes all experimental propositions defined by Daniel’s prescription, applied
to any possible time evolution. Is it true for the separated product? To answer
this question, we must first know what kind of time evolutions can undergo two
initially separated quantum systems S1 and S2.

First, one can simply keep each system in its own “room,” and let the sys-
tems evolve. Consider now the experimental situation represented schematically
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Fig. 1.

in Fig. 1. Two quantum systems S1 and S2 are prepared in two different “rooms”
of the lab and stay in their own “room” until a time t0. Then S1 and S2 in-
teract, and finally a measurement is performed at some later time t1, after the
interaction has taken place. This is typically a situation encountered in scattering
experiments.

According to quantum theory, the time evolution from t0 to t1 is given by a
unitary operator U = exp[−i(t1 − t0)(H1 ⊗ 1 + 1 ⊗ H2 + W )], where Hi is the
free Hamiltonian acting in Hi , and W the interaction. As discussed in the intro-
duction, at time t0 the state of S is a product state. Now, because of the interaction
W , U transforms instantaneously initial product states into entangled states. This
means that the mathematical structure of the poset LS of the compound system
after time t0 is very different from that of Lsep. How this change occurs is far be-
hind the scope of this article. However, we can expect that at time t1, experimental
propositions concerning the compound system correspond to closed subspaces
of H1 ⊗ H2. Hence, according to Daniel’s principle, it is natural to ask that for
all b ∈ P(H1 ⊗ H2), the set of product states contained in U−1(b) is an element
of Lsep. This is not true if we put Lsep = P(H1) ∧© P(H2) (Ischi (submitted for
publication), Theorem 10.4). As a consequence, some important experimental
propositions are not described by the separated product of Aerts. Let us give a
second argument against it.

2.2. Propensities

It is natural to assume the existence of a propensity map ω : �sep × Lsep →
[0, 1] as defined for instance in Gisin (1984). By a result of Pool, every or-
thocomplemented lattice which admits a propensity map is orthomodular (Pool,
1968). Now, P(H1), P(H2) and P(H1) ∧© P(H2) are complete atomistic ortho-
complemented lattices. Hence, if Lsep = P(H1) ∧© P(H2), then Lsep cannot admit
a propensity map, since by Aerts’s theorem, if L1 and L2 are complete atom-
istic orthocomplemented lattices and L1 ∧©L2 is orthomodular, then L1 or L2 is
distributive (Aerts, 1982).



Orthocomplementation and Compound Systems 2211

3. PHYSICAL HYPOTHESES

3.1. General Assumptions on the Posets Representing
Experimental Propositions

In the sequel, for any physical system S, we shall consider not only experi-
mental propositions, but more generally all {0, 1}-valued experiments on S. Hence,
following Piron (1976) and Aerts (1982), we shall assume that LS is closed under
arbitrary set-intersections (i.e. ∩ω ∈ LS , for all ω ⊆ LS). Let us repeat the physi-
cal argument. Let {µ(αi) ∈ LS}i∈I with αi {0, 1}-valued experiments on S. Define
πiαi by the prescription: “Perform any αi .” Then obviously, µ(πiαi) = ∩iµ(αi).

We make a second general hypothesis on the posets representing experimental
propositions. For p ∈ �S , let εp denote all {0, 1}-valued experiments α on S, such
that p ∈ µ(α). Then, following Aerts (1982), we assume that for any two states p

and q in �S , εp⊆/ εq . Whence follows that {p} = ∩{µ(α) ; α ∈ εp}, for all p ∈ �S .
As a consequence, LS contains ∅, �S , and all singletons of �S , and LS is

closed under arbitrary set-intersections. Hence, LS is the set of closed subspaces
of a simple closure space.

To be short, we call a set L of subsets of a nonempty set �, closed under
arbitrary set-intersections, and containing ∅, �, and all singletons of �, a simple
closure space on �. Note that a simple closure space is a complete atomistic
lattice. Moreover, if L is a complete atomistic lattice, then {�[a] ; a ∈ L}, where
�[a] denotes the set of atoms under a, is a simple closure space on the set of
atoms of L.

Four our main result, we need to assume moreover that LS1 and LS2 are
orthocomplemented with the covering property, which is of course true if LSi

=
P(Hi) with Hi a complex Hilbert space.

3.2. Assumptions Relating LSi and LSsep

We assume that Lsep is a weak tensor product of LS1 and LS2 :

Definition 3.1. Let L1 ⊆ 2�1 and L2 ⊆ 2�2 be simple closure spaces on �1 and
�2, respectively. Then, S(L1,L2) is defined as the set of all simple closure spaces
L ⊆ 2� on � such that

P1 � = �1 × �2,
P2 a1 × �2 ∪ �1 × a2 ∈ L, ∀a1 ∈ L1, a2 ∈ L2,
P3 ∀pi ∈ �i, Ai ⊆ �i , [p1 × A2 ∈ L ⇒ A2 ∈ L2] and [A1 × p2 ∈ L ⇒

A1 ∈ L1].

We call elements of S(L1,L2) weak tensor products of L1 and L2. Let Ti ⊆
Aut(Li), where Aut(Li) denotes the group of automorphisms of Li (i.e. bijective
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maps preserving all meets and joins). Then, we define S
T1T2

(L1,L2) as the subset
of all L ∈ S(L1,L2) such that

P4 ∀vi ∈ Ti , ∃u ∈ Aut(L) | u(p1, p2) = (v1(p1), v2(p2)), ∀(p1, p2) ∈ �.

Note that for a simple closure space L ⊆ 2� on �, we omit the brackets when
writing singletons and call elements of � atoms. Moreover, for u ∈ Aut(L), we
also write u for the bijective map on � induced by u.

For our main result, we only need Axioms P1–P3. Axioms P1 and P2 have
already been discussed in the introduction. We now discuss Axioms P3 and
P4.

Axiom P4: If S1 and S2 are quantum systems described by two complex Hilbert
spaces H1 and H2, then it is indeed natural to assume that Axiom P4 holds for
(T1, T2) = (U(H1),U(Hi)), where U(Hi) denotes the group of automorphisms
of P(Hi) induced by unitary maps. In words, it is natural to assume that products
of unitary maps represent physical symmetries of the compound system. Of
course, we can expect that Axiom P4 also holds for pairs of antiunitary maps.
Suppose now that the automorphisms in T1 and T2 describe possible time
evolutions of each system. Then, according to the discussion in Section 2.1,
Axiom P4 must hold for T1 and T2.

Axiom P3: From the experimental standpoint, the system S1 can certainly not be
prepared in any given state. However, we can reasonably assume that there is
at least one state (say p0) in which S1 can be prepared, whatever the system
S1 might be. Now, suppose that p0 × B ∈ Lsep and let P ∈ Psep such that
µ(P ) = p0 × B. Define a {0, 1}−valued experiment P2 as: “Prepare system S1

in room 1 in the state p0 and perform P.” Then obviously, P2 is a {0, 1}−valued
experiment on S2, and µ2(P2) = B, hence B ∈ L2. Therefore, Axiom P3 follows
from Axiom P4, if T1 and T2 act transitively on �S1 and �S2 , respectively, and
contain the identity, which is of course true if T1 = U(H1) and T2 = U(H2).
It is important to note, that to justify Axiom P3, we need to assume both the
existence for each system of a particular state in which each it can be prepared,
and enough physical symmetries. Indeed, if for instance T1 corresponds to
automorphisms describing possible time evolutions of S1, then T1 certainly does
not act transitively on �S1 . Finally, not that if the system S1 can be prepared in
a given state p0, and if U1 is a time evolution sending the initial state p0 to a
final state p1, then this does not mean that S1 can be prepared in the state p1.

4. MATHEMATICAL RESULTS

4.1. Generalities

Before we present some mathematical results concerning weak tensor prod-
ucts, we want to emphasize on the fact that obviously, a weak tensor product
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Fig. 2. Ti =Aut(Li ).

(hence Lsep) cannot be isomorphic to the lattice of closed subspaces of a Hilbert
space. Therefore, some of Piron’s axioms must fail in Lsep (Piron, 1964). In the
light of Theorem 34.5 in Maeda and Maeda (1970), one can expect that Lsep is not
orthocomplemented with the covering property.

Definition 4.1. Let L1 ⊆ 2�1 and L2 ⊆ 2�2 be simple closure spaces on �1 and
�2, respectively. Then

L1 ∧©L2 := {∩ω ; ω ⊆ {a1 × �2 ∪ �1 × a2 ; a1 ∈ L1, a2 ∈ L2}} ,

L1 ∨©L2 := {R ⊆ �1 × �2 ; R1[p] ∈ L1, R2[p] ∈ L2, ∀p ∈ �1 × �2} ,

ordered by set-inclusion, where R1[(p1, p2)] := {s ∈ �1 ; (s, p2) ∈ R} and simi-
larly, R2[(p1, p2)] := {t ∈ �2 ; (p1, t) ∈ R}.

As a first result, we find easily that for any Ti ⊆ Aut(Li), ST1T2
(L1,L2),

ordered by set-inclusion, is a complete lattice, the bottom and top elements of
which are given by L1 ∧©L2 and L1 ∨©L2, respectively (Ischi (submitted for publi-
cation), Theorem 2.13). The meet is the set-intersection, hence S

T1T2
(L1,L2) is a

meet-sublattice of S(L1,L2).
Moreover, suppose that if Li �= 2�i , then there are two atoms, say p and

q, such that p ∨ q contains a third atom (say r) and covers p, q and r . Then,
L1 ∧©L2 = L1 ∨©L2 if and only if L1 = 2�1 or L2 = 2�2 (Ischi (submitted for
publication), Theorems 5.2 and 5.4).

The bottom element L1 ∧©L2 is the separated product of Aerts defined for
ortholattices in Aerts (1982) (Ischi (submitted for publication), Lemma 3.2). For
atomistic lattices (not complete) with 1, L1 ∧©L2 can be defined in a similar way by
taking only finite intersections. Then, it is isomorphic to the box product L1�L2

of Grätzer and Wehrung (1999), and if L1 and L2 are moreover coatomistic, to the
lattice tensor product L1�× L2 (Ischi (submitted for publication), Theorem 3.8).

On the other hand, the top element L1 ∨©L2 is the �×−tensor product of
Golfin (1987), and it is isomorphic to the tensor products of Chu, Barr (1979)
and Shmuely (1974) (Ischi (submitted for publication), Theorem 3.14). Let C be
the category of complete join-semilattices with maps preserving arbitrary joins,
and c the subcategory of C defined by considering as objects simple closure
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spaces. Let L1 and L2 be simple closure spaces. Then there is a bimorphism
f : L1 × L2 → L1 ∨©L2, such that for any object L of C or c and any bimorphism
g : L1 × L2 → L, there is a unique arrow h such that the diagram commutes

(Ischi, Theorem 3.20). For join-semilattices and maps preserving finite joins, this
is exactly the definition of the join-semilattice tensor product given by Fraser in
Fraser (1976). Hence, we can call the top element the complete join-semilattice
tensor product or simply the tensor product in the category c.

Note that for any Ti ⊆ Aut(Li), ST1T2
(L1,L2) can be defined as the set of

all simple closure spaces satisfying the above universal property with respect not
to all objects L and bimorphisms g, but with respect to a given class of objects
and bimorphisms (Ischi (submitted for publication), Theorem 4.4). Therefore, it
is natural to call elements of S(L1,L2) weak tensor products of L1 and L2.

4.2. Orthocomplemented Weak Tensor Products

If L1 and L2 are orthocomplemented simple closure spaces, then the binary
relation on �1 × �2, defined as (p1, p2)#(q1, q2) ⇔ p1 ⊥ q1 or p2 ⊥ q2, induces
an orthocomplementation of the separated product L1 ∧©L2. Coatoms have the
form (p1, p2)# = p⊥

1 × �2 ∪ �1 × p⊥
2 . Our main result states that the separated

product is the only orthocomplemented weak tensor product. More precisely, we
have:

Theorem 4.2. (Ischi (submitted for publication), Theorem 8.6) Let L1, L2 be
orthocomplemented simple closure spaces with the covering property, and let L ∈
S(L1,L2). Then L admits an orthocomplementation if and only if L = L1 ∧©L2.

We outline the proof in caseLi are irreducible andL is transitive, i.e. the action
of Aut(L) on the set of atoms of L is transitive (note that this is a consequence of
Axiom P4 if T1 and T2 act transitively on �1 and �2, respectively). First it follows
easily from Axiom P3 that if x1 is a coatom of L1 and x2 is a coatom of L2, then
X := x1 × �2 ∪ �1 × x2 is a coatom of L. We prove that all coatoms of L are of
this form. Denote by ′ : L → L the orthocomplementation ofL. Then X′ is an atom
of L, say p. Let q be another atom. Since L is transitive, there is an automorphism
u ∈ Aut(L) such that u(p) = q. Define u′ : L → L as u′(a) := (u(a′))′. Then u′ is
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an automorphism of L. Moreover, q ′ = u(p)′ = u(p′′)′ = u′(X). Then the proof
follows directly from

Theorem 4.3. (Ischi (submitted for publication), Theorem 7.5) Let L1, L2 be
simple closure spaces such that the join of any two atoms contains a third atom.
Let L ∈ S(L1,L2), and let u ∈ Aut(L). Then there is a permutation σ and two
isomorphisms vi : Li → Lσ (i) (i = 1, 2) such that for all p ∈ �1 × �2, u(p)σ (i) =
vi(pi).

The proof relies on the following remarks: Let p, q ∈ �1 × �2. (i) By Axiom
P2, if p1 �= q1 and p2 �= q2, then p ∨ q does not contain a third atom. (ii) By
Axiom P3, if p1 = q1, then p ∨ q = p1 × (p2 ∨ q2), and the same kind of equality
holds for left lateral joins of atoms. As a consequence, since u preserves joins,
u(p1 × �2) is either of the form q1 × �2 or of the form �1 × q2, with qi atoms.

A similar result to Theorem 4.2 was obtained in (Ischi (to appear)) for
Li = P(Hi) and with a set of axioms weaker than those used here and in previous
works (Aerts and Daubechies, 1978; Pulmannova, 1985; Watanabe, 2003).

4.3. Weak Tensor Products with the Covering Property

It was proved by Aerts, in case L1 and L2 are orthocomplemented simple
closure spaces, that if L1 ∧©L2 has the covering property or is orthomodular, then
L1 = 2�1 or L2 = 2�2 (Aerts (1982), or see Ischi, Theorem 9.1).

The same result holds for the top element L1 ∨©L2. More precisely, assume
that L1 and L2 have the covering property and that if Li �= 2�i , then there are
four atoms p, q, r and s such that p ∨ q covers p, q, r and s. Then, L1 ∨©L2 has
the covering property if and only if L1 = 2�1 or L2 = 2�2 (Ischi (submitted for
publication), Theorem 9.4).

We now give an example of a weak tensor product with the covering property,
which, as discussed in Section 2.1, is a very natural model for Lsep. Let H1 and
H2 be complex Hilbert spaces and let L1 = P(H1) and L2 = P(H2) be the lattices
of closed subspaces. Let V be a closed subspace of H1 ⊗ H2. Denoted by �⇓[V ],
the set of atoms of P(H1 ⊗ H2) contained in V and spanned by product vectors.
Define

L1 ⇓©L2 := {�⇓[V ] | V ∈ P(H1 ⊗ H2)} .

Then L1 ⇓©L2 ∈ S
T1T2

(L1,L2) with (T1, T2) = (U(H1),U(H2)), where U(Hi) de-
notes the group of automorphisms of P(Hi) induced by unitary maps. Note that
the same inclusion holds for pairs of antiunitary maps, but not for (T1, T2) =
(Aut(L1),Aut(L2)). Moreover, L1 ⇓©L2 is different from the top and the bottom
elements, L1 ⇓©L2 is coatomistic and has the covering property (Ischi (submitted
for publication), Theorem 10.4). As an example, consider the case where H1 and



2216 Ischi

H2 have finite dimensions. Then, there is a bijection between anti-linear maps
from H1 to H2 and coatoms of L1 ⇓©L2, namely A �→ {p × (A(p))⊥ | p ∈ �1}
(Ischi (submitted for publication), Proposition 10.2).

4.4. A Second Example

Let L1 and L2 be coatomistic simple closure spaces. Define L1 ∗©L2 :=
{∩ω | ω ⊆ �′

∗© }, with

�′
∗© := {R ⊂�= �1 × �2 | R1[p] ∈ �′

1 ∪ {�1}
and R2[p] ∈ �′

2 ∪ {�2}, ∀p ∈ �1 × �2} ,

where �′
i denotes the set of coatoms of Li (hence Ri[p] is either a coatom or

�i). Then L1 ∗©L2 ∈ S
T1T2

(L1,L2) with Ti = Aut(Li) (Ischi and Seal (to appear),
Theorem 7.8).

Let Cal0Sym be the category of coatomistic simple closure spaces such that
for any two coatoms x and y, and any two atoms p and q, there is an atom r and
a coatom z with r /∈ x ∪ y and p, q /∈ z, with maps preserving arbitrary joins,
sending atoms to atoms or 0, and with right adjoint sending coatoms to coatoms
or 1. Then, Cal0Sym equipped with the bifunctor ∗© and the functor op which sends
a lattice to its dual, is ∗−autonomous (Ischi and Seal (to appear), Theorem 5.5),
hence a model for Girard’s linear logic (Barr, 1991).

Note also that there is a bijection between Cal0Sym(L1,Lop

2 ) and �′
∗© ∪ {1},

namely f �→ {p × f (p) | p ∈ �1}. Hence, for finite-dimensional Hilbert spaces,
we have

P(H1) ⇓©P(H2) ⊆ P(H1) ∗© P(H2).

Therefore, according to the discussion of Section 2.1, P(H1) ∗© P(H2) might, as
well as P(H1) ⇓©P(H2), be a good candidate for Lsep.
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